1BAC SM BIOF

Résumé de cours **PRODUIT SCALAIRE**

PROF: ATMANI NAJIB

PRODUIT SCALAIRE DANS V_2 **Etude analytique (1)**

I) BASE ET REPERE ORTHONORMES

Soit B(i; j) une base de V_2 .

- 1) La base B est dite **orthogonale** si $\vec{i} \cdot \vec{j} = 0$
- 2) La base B est dite **normée si** $\|\vec{i}\| = \|\vec{j}\| = 1$
- 3) Une base orthogonale et normée s'appelle une base orthonormée.
- 4)Soit O un point du plan et Soit $\mathcal{R}(O;i;j)$ un repère du plan (\mathcal{P}) ; On dit que le repère \mathcal{R} est orthonormé si la base B(i; j) associé à \mathcal{R} est orthonormée.

II) EXPRESSION ANALYTIQUE DU PRODUIT SCALAIRE.

L'espace V_2 est rapporté à une base orthonormée B(i; j)

Soient : $\vec{u} = x\vec{i} + y\vec{j}$ et $\vec{v} = x'\vec{i} + y'\vec{j}$ deux vecteurs de V_2

on a: 1)
$$\vec{u} \cdot \vec{v} = xx' + yy'$$
 2) $\|\vec{u}\| = \sqrt{x^2 + y^2}$

$$2) \left\| \overrightarrow{u} \right\| = \sqrt{x^2 + y^2}$$

3)
$$\vec{u} \perp \vec{v} \Leftrightarrow xx' + yy' = 0$$

4)Si
$$A(x_A; y_A)$$
 et $B(x_B; y_B)$ alors

$$AB = \left\| \overrightarrow{AB} \right\| = \sqrt{\left(x_B - x_A\right)^2 + \left(y_B - y_A\right)^2}$$

III) PRODUIT SCALRE ET LIGNES TRIGONOMETRIQUES.

Théorème :L'espace V_2 est rapporté à une base

orthonormée $B(\vec{i}; \vec{j})$ Soient $\vec{u}(x; y)$ et $\vec{v}(x'; y')$

$$\cos\left(\vec{u};\vec{v}\right) = \frac{xx' + yy'}{\sqrt{x^2 + y^2} \times \sqrt{x'^2 + y'^2}} \text{ et } \sin\theta = \frac{xy' - x'y}{\left\|\vec{u}\right\| \cdot \left\|\vec{v}\right\|} = \frac{\det\left(\vec{u};\vec{v}\right)}{\left\|\vec{u}\right\| \cdot \left\|\vec{v}\right\|}$$

IV) DISTANCE D'UN POINT PAR RAPPORT A UNE

1) Vecteur normal sur une droite.

Soit D(A;u) la droite passante par A et de vecteur

directeur u; tout vecteur n non nul et orthogonal à us'appelle un vecteur normal sur la droite(**D**).

Remarque :Si n est normal sur une droite (D); Tout

Vecteur non nul colinéaire avec *n* est aussi Normal sur la droite (D).

Si (D): ax + by + c = 0 est une droite dans le

plan alors u(-b;a)), et le vecteur n(a;b) normal sur la droite (D).

2) Equation d'une droite définie par un point donné et un vecteur normal.

Propriété: Soient $A(x_A; y_A)$ un point donné, et n(a;b)un vecteur non nul. La (D) la droite qui passe par A et qui admet n comme vecteur normal a une équation cartésienne de la forme :

(D):
$$a(x-x_A)+b(y-y_A)=0$$

Exemple : déterminer une équation cartésienne de la droite (D) qui passe par A(0;1) et qui admet n(2;1)comme vecteur normal

Solution: on a (D) qui passe A(0;1) et n(2;1) un vecteur normal donc : une équation cartésienne de la droite (D) est : 2(x-0)+1(y-1)=0

donc: (D): 2x + y - 1 = 0

3) Distance d'un point par rapport à une droite.

Définition : Soient (D) une droite et M_0 un point dans le plan. La distance du point M_0 à la droite (D) est la distance M_0H où H est la projection orthogonal de M_0 sur (D).On la note : $d(M_0;(D))$

Remarque: La distance d'un point M_0 à une droite (D) est la plus petite distance de M_0 à un point M de (D)

Théorème :Soient la droite (*D*): ax + by + c = 0 et $M_0(x_0; y_0)$ un point dans le plan.

La distance du point M_0 à la droite (D) est :

$$M_0H = \frac{\left|ax_0 + by_0 + c\right|}{\sqrt{a^2 + b^2}}$$

V) L'inégalité de Cauchy-Schwarz et triangulaire.

1)a)Pour tout vecteurs \vec{u} et \vec{v} on a : $\vec{u} \cdot \vec{v} \le |\vec{u} \cdot \vec{v}| \le |\vec{u}| \times |\vec{v}|$

- b) l'égalité est vérifiée si et seulement si u et v sont colinéaires.
- 2)a) Pour tout vecteurs \vec{u} et \vec{v} on a:

 $\|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|$. L'inégalité triangulaire.

b) l'égalité est vérifié si \vec{u} et \vec{v} sont colinéaires et de même sens.

Propriétés : L'espace V_2 est rapporté à une base orthonormée $B(\vec{i};\vec{j})$ Soient $\vec{u}(x;y)$ et $\vec{v}(x';y')$ on a

1) L'inégalité de Cauchy-Schwarz

$$\vec{u}.\vec{v} \le |\vec{u}.\vec{v}| \le |\vec{u}| \times |\vec{v}| \iff$$

$$xx' + yy' \le |xx' + yy'| \le \sqrt{x^2 + y^2} \times \sqrt{x'^2 + y'^2}$$

2) L'inégalité triangulaire.

$$: \|\vec{u} + \vec{v}\| \le \|\vec{u}\| + \|\vec{v}\|. \Leftrightarrow$$

$$\sqrt{(x+x')^2+(y+y')^2} \le \sqrt{x^2+y^2} + \sqrt{x'^2+y'^2}$$

C'est en forgeant que l'on devient forgeron » Dit un proverbe. C'est en s'entraînant régulièrement aux calculs et exercices Que l'on devient un mathématicien